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SUMMARY

The applicability of an approach is tested experimentally, which interrelates the frequency as well
as the temperature shift of isotherm and isochrone viscoeiastic data with the apparent activation
energy of the viscous flow. The procedure is based on the evaluation of the slopes of isotherms in
the log viscoelastic function - log frequency plot and of isochrones in the log function - reciprocal
temperature plot. Experimental data demonstrate that the approach applies over the entire tempe-
rature range from the high-temperature melt to the glass transition, where the WLF equation fails
oftenly. The temperature range of variable activation energy turns out to be substantially smaller
than supposed. Above T_+ 40 K constant activation energy suffices, suggesting that the range of
validity of the EYRING model is quite larger than usually admitted.

CORRELATIONS BETWEEN ACTIVATION OF FLOW AND GLASS TRANSITION

According to the modified ROUSE theory of undiluted polymers in the "free draining" assumption of
the bead-spring model for a linear flexible random coil the viscoelastic moduli of polymer melts are
related to the relaxation times of p modes of motion, Tp, by 2
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G' = (pRT/M) T w1 %/ (l+uT %) G" = (pRT/M) Z wt /(l+uw7 %) . (1)
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G' and G'' are the storage and the loss modulus, resp., M is the molecular weight, pthe density and
w the angular frequency of the harmonic motion. The relaxation times are dependent on the trans-
lational friction coefficient per subunit, Lyr ON the degree of polymerization, P, and on the root -
mean-square end-to-end distance, <h”>, by

_ 2 2 2
‘rp-<h >Pr Q. /6m°p kT . (2)

3

The factor Qg represents the ephancement of friction by entanglement restraints

In the range of finite linear viscoelasticity the BOLTZMANN superposition principle holds, which re-
quires implicitly that all relaxation times show identical temperature dependence. Customary this is
expressed by the ratio of any specific relaxation time at temperature T to its value at an arbitrarily

chosen reference temperature To:

[ dp/ 0,05 =2y . (3
Thus ar is the "shift factor", which allows the superposition of isotherm viscoelastic curves to a

composite "master curve"” in the logarithmic viscoelastic function - frequency plane.

Since the low-~frequency limit of the loss modulus G''= wng, the friction coefficient may be expressed
in terms of the steady-state zero-shear viscosity, n_,
o

2

coz36noMo/p <N, y (4)
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Consequently, the relaxation time can be related also to the zero-shear viscosity:

_ 2 2
Tp = 6noM/1T p"oRT (5)

It follows that the shift factor a— can also be expressed by

T
ap=[hBg 1T [[hP>r 1T
T~ o' T o (e} To
o (6)
or ap=nT e /n"Te s

respectively. Under reduced temperature and density conditions the shift factor is simply given by
the ratio of the zero-shear viscosities

o
ap=I[n,/n,"] , (6a)
with noo the zero-shear viscosity at the reference temperature. As consequence of the BOLTZ-

MANN superposition principle, however, the shift factors apply not only in the range of zero-shear

viscosity, but for the entire range of the viscoelastic function above Tg .

A second approach to express relaxation times is related to the thermodynamic probability of con-
figurational changes , @, as suggested by GIBBS and DIMARZIO 4):
TP(T):I/Q(T) . (7)

The probability of configurational changes depends on both the energy of the potential energy
barrier between stable configurations, Ay, and the critical configurational entropy, S:, of the smal-
lest cooperative region of configurational redistribution:
*
Q(T)=Aexp(-AuSC /kTSc) . (8)
SC is the temperature dependent molar configurational entropy
S, (T) =Acpln(T/T2) (9)

and T, the thermodynamical equilibrium "freeze in" temperature at which Q(T,y) = 0. ACP is the
difference of the heat capacities of the equilibrium melt and of the glass at Tg' Tz is experiment-

ally not accessible, however. It is stated only that it is situated around ‘['g - 50 K.

5)

Applying to the glass transition ”° the shift factor is given by the expression

log ap = -2303 (AuS_" /) {[1/T S (T )] - [1/Ts_(T)]} : (10)

Introducing the expression for the temperature dependent molar configurational entropy, equation
(10) can be rewritten in the form of the empiric WILLIAM - LANDEL - FERRY relation

log ap = -a,(T-T)/[ay+(T-T)] : (i

The two constants are a

il

*
1 2.303 AuSC /Acp T,k In (TO/TZ)

(12)
ay = T/ L1+ (1 T)(T-T)I I (TT,/ T2}

and it is quite evident that the constant a, has the dimension of a temperature.

Starting with equation (6 a) it is obvious that the temperature dependence of the shift factor can be
expressed in terms of the temperature dependence of the zero-shear viscosity.

Concerning viscous flow of a fluid, two requirements have to be considered,

- the existence of the necessary "free volume" for the translational movement of the particles,
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with Qv the probability of free volume creation and

the necessity to "overcome"” a potential energy barrier between equilibrium positions of the fluid
particles, given by the probability Qs.

Consequently, the probability of viscous flow is given by 6) Qﬂ = SZV Qe . (13)

Therefore two limiting models may be discussed.

In the first model the viscous flow depends on free volume creation, i. e. the existent free volume
determines the flow. This situation occurs at temperatures near T_. Than DOOLITTLE's equation
) applies, which relates the viscosity of the polymer melt in the terminal zone to the ratio of the

specific occupied volume, Voc 1 1O the specific free volume, Vi

n=A' eXP(BOVOC/Vf) . (14)

A' and B0 are two empirical constants, the latter near unity. The temperature dependence 0f the

viscosity is exprimed via the temperature dependence of the respective specific volumes

vizvi,o[l+a(T—To)] ) (15)

with Vi the specific volume at the reference temperature T0 and o the expansion coefficient.
?

The ratio of the specific volumes in equation (14) will be consequently (16)

Voe! Vi = (V-vd vy = {vg[l +a (T~ Tg)] “Vig (4 +ap(T- Tg)]}/{vf,g [1+ af(T-Tg)]}
v is the specific volume of the liquid at T, v_ that at T_. Ve g is the specific free volume at T_.
)
o and oy are the thermal expansion coefficients of the liquid and of the free volume above T .

Introduction of the viscosity ratio, according to equation (6 a) into equation (14) and rearranging
yields a WLF equation again:

--c8(T- 8 -
logag = -C; (T Tg)/[C2 +(T Tg)] . (17)
The constants are given here by the expressions
B .. - 8 -q,! .
€% =-(B /2.303) [(a) /ay) l](vg/vf’g) C,° = oy (18)

Substantially simplified expressions for the constants result according to the original paper of
WILLIAMS, LANDEL and FERRY 8), when simplifying assumptions are admitted for both the

fractional free volume, f, and for the temperature dependence of the fractional free volume,

-

Voo 7 vf,i.e. :vf/v=vf/voc (19)

and f:fg+Aaf(T-Tg) . (20)

Aaf = (aL - aG) Tg is the difference of the expansion coefficients of the polymer melt and
of the glass at Tg. The resulting constants are

g . g - . 21
C,® =B /2303 fg and C, fg/Aozf (21)
Although the theory based WLF equations are valid strictly for Tg as the reference temperature only,
the empirical relation  _~O(T_ o
logap =-C (T T)/IC, +(T-T°)] (17a)

is used for other reference temperatures, To’ too. The applicability of the relation generally is

claimed for temperatures up to Tg + 100 K. The interdependence between the constants for different
reference temperatures 0_~8~8 g _ o g ~
€7 = C Pl CF+ T, Tg) C, >+ Ty Tg (22)
o . . .
suggests that a single temperature correction, T _ = T,~ C, » Mmay be used in the WLF equation.

=C
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Consequently, the WLF equation may be written in a form being similar to the empiric VOGEL re-

9)

lation ”/, which has been deduced for the temperature dependence of the viscosity:

logap=C (T-T)/(T-T,) (23)

T, is called "VOGEL temperature", which is claimed to be situated in the range of Tg- 70 K.

The second model applies at higher temperatures, where the existence of sufficient free volume

implies that overcoming of the potential energy barrier is the rate determining step of the viscous

10)

flow exclusively. According to EYRING's theory, when extended to viscous flow of fluids , an

ARRHENIUS type equation is obtained for the temperature dependence of the zero-shear viscosity

n, = [(hNA/V) exp (- AS#/R)] exp(AH#/RT)

(24)
Bexp (E/RT) s

respectively. V is the molar volume, AS#

or
T"0

and A H#

In the ARRHENIUS formulation B is considered a temperature invariant constant and E the appar-

are the activation entropy and enthalpy, resp.

ent activation energy of flow. Consequently, the shift factor can be expressed, within the range of
validity of ARRHENIUS's law, in the following way:

log ay = log(n /n°) = log (n/n°) = (E/2.303R) [(1/T) - (1/ T )]

=(-E/2.303RT )T -T )/ T)] (25)
By comparison with the WLF equation (17 a) the two constants can be expressed as
o o _
Cl :E/2.303RT° C2 =T, (26)

An interdependence between the apparent activation energy of viscous flow and 'l'g is indicated, if

the glass transition temperature, Tg, is considered as reference temperature, instead ot TO:

- g
E/'['g = 2.303 RCl

(27)

In Figure 1 both data from liter-

® coD/A -
ature 1D-13) and own results
A literature data i R
300 ® own data con/ng /ARBCel are presented to illustrate this
correlation. The shape of the
- PDNBM @ PHECM P
—E PMMA Figure remembers on similar att-
i empts of other authors to correl-
X
A *PS ate Tg data of polymers with va-
@ N A . .
200} , PET ! rious characteristics, like melt-
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{ TEFLON PB : & p ’ ' yp
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i : AT 14) . .
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L ~ P . 2
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evident that the C, constant of
l-PE%{@ “A " p-adipates 1
poMs @/ % PEGE T, (K) of the WLF equation cannot be
200 300 400 admitted an" universal" constant.

Figure l: Apparent activation energy of flow, E, versus glass

transition temperature, Tg’ for various polymers

It is a factor, which varies bet -

ween certain limits, depending
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on the nature of the polymers. For the greater part of polymers, however, a constant factor seems
to be applicable within certain limits. This observation is in accordance with statements of ADAM
and GIBBS ¥ and of SCHWARZL and ZAHRADNIK 1%
WLF constant, as admitted by FERRY in the third edition of his book too 2 . As a general rule it

concerning the non-universal character of

can be stated, however, that the temperature coefficient of viscous flow of a polymer is as higher

as higher its glass transition temperature. When writing the WLF equation (17 a) in the form
= - o o - -
log ap= {-C,°T/[C,° +(T-T)HWUT-T)/T] (28)

and comparing with the ARRHENIUS type relation {25), it is obvious that the activation energy of
viscous flow is a temperature dependent factor, E = E(T):

E(T)=2.303RT, C,°T/[C,° +(T-T )] = 2.303RT_C,°T/(T-T,) . (29)

Consequently, the two ranges of viscous flow are delimited by the different nature of the activation
energy within both regimes. Constant activation energy of flow, at higher temperatures, implies a
stationary flow mechanism. The monotonic increase of the activation energy when approaching T
suggests a gradual change in the flow mechanism, as predicted in the range of validity of the WLF
relation. This monotonic change is not confirmed generally by experimental data. Especially at tem-
peratures nearest T_ more or less pronounced discrepancies have been found between experimental

shift factors and those calculated applying the WLF relation 15).

EXPERIMENTAL APPROACH FOR SHIFT FACTORS VIA ACTIVATION ENERGY

Experimental data substantiate that the ARRHENIUS law for viscous flow applies in the terminal
zone, whereas the WLF equation is considered to be valid mainly for the glass transition region.
It has been shown by us recently that in the terminal zone an ag shift of isochrone viscoelastic
data along the reciprocal temperature axis can be performed, besides the usual aTshift of isotherm
data along the log frequency axis. Isochrone mastercurves may be constructed in this way 16)

This is demonstrated in Figure 2 for G' of a poly(isobutylene), where the activation energy is tempe-
rature invariant. Consequently, isotherm and isochrone mastercurve are transformable into one-an-
other by rescaling of the abscissa. The measurements have been performed in the excentric rotating
disk mode. Due to slipping of the sample between the plates the glass plateau could not been

reached. The composite curves are flattened at high frequencies and low temperature, consequently.

Figure 2 makes evident that the ar shift corresponds to a frequency difference between the isotherms
in double logarithmic scale, whilst the a . shift manifests a A (1/7) differnce between the isochrones
in log storage modulus - reciprocal temperature scale. Both differences are measured for arbitrarily

chosen constant value of the respective modulus. Thus we may write for the shifts of the data
log a. = (A logw) ~, for isotherms and ap = (a1 . for isochrones, (30)
T Gy F Gy

GE'l being the arbitrarily chosen constant value of the modulus. In terms of the above defined
shift factors the ARRHENIUS law (25) may be formulated

logaT=aFE/2.303R , (31)

corresponding to (A log w)G. =(E/2.303R)(A T'I)G, . (32)
a a

Equation (31) makes evident that both shift factors are interrelated by the activation energy of

viscous flow. This means that, within the range of validity of ARRHENIUS's law, the shift of

isotherms as well as of isochrones is governed only by the constant activation energy of flow, and

that composite curves can be drawn using an unique shift principle 17
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w

Viscoelastic data may be repre-

sented spatially in log visco-

ISOCHRONE COMPOSITE
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log G' ('ro/'r) ,KPa

Frequency range, log rpm:

0 -2.10_, strated that the slopes of the
@, log rpm=0 isochrone and of the isotherm
viscoelastic functions in a gi-
(1/T). 103, shifted - ven point are also connected via
2.3 3.3 4.3 5.3 activation energy of flow 18):
Figure 2: - Construction of isoterm and isochrone [ logG'/ a(l/T)]m
mastercurves for poly(isobutylene), M, = 12000 (3 logG'/ alogw].[. = E(T)/2.303R. (33)

Equation {33} does not imply, however, a constant activation energy of viscous flow. This assumpt-
ion is connected only with the EYRING model. The above equation is useful to deliminate the tem-
perature regimes, where the two models are valid. The EYRING model will be the determining one
as long as the activation energy derived from ratio of the slopes of the isochrone and the isotherm
curves at a given point of the viscoelastic function surface is a temperature independent constant.
On the other hand a temperature dependent E-value suggests that the DOOLITTLE model applies,
and that the viscoelastic behaviour of the polymer is depending mainly on the disponible free

volume for configurational redistribution.

The discussed approach for evaluation of temperature dependent viscoelastic data offers the chance
to rediscuss literature data on the viscoelastic properties of polymers in the vicinity of the glass
transition. Data of FERRY et al. for poly(butylmethacrylate) (PBMA)!9) and poly(n-octylmetha-
crylate) (PnOMA) 20) as well as of SCHWARZL and ZAHRADNIK for poly{methylmethacrylate)
(PMMA) 15) have been used. It may be stated that in the latter case the shift factors calculated by

our method are in agreement with the experimental ones, whereas the WLF equation failed at lower
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In Figure 4 the activation energies used to evaluate the shift Figure 3: Isotherm and isochrone

factors in the range near T_ are shown for the composite
curves presented in Figure 3. These activation energies were
evaluated by the trial-and-error method. Calculations acc-
ording to equation (33), from the slopes of the isochrones
and the isotherms at a given point in the viscoelastic master

surface, yielded somewhat higher values 22).

It is remarkable that the range of variable activation energy
of flow, and that of the applicability of the WLF relation,
is relatively narrow. A customary constant activation energy
is reached aiready above Tg + 40 K. At least for the studied
polymers the range of the DOOLITTLE model and of the
related WLF equation is much smaller as supposed usually.

According to equation (33) the activation energy of flow is
given by the ratio of the two slopes of isochrones and iso-
therms. The correlation between the slopes of composite
curves for the storage modulus and the activation energy in
the final zone of viscous flow is illustrated in Figure 5.
it is evident that the slope of the isotherms is nearly ident-
ical for all polymers studied. Some influence of polydisper-
sity is suggested by ONOGI et al. 21). On the other
hand, the slope of the isochrones is strongly dependent on

the activation energy of flow and - via this activation ener-

mastercurves for PMMA (Solvic 229)
PBMA (MW = 3050000) and PnOMA
(MW = 3620000). Reference tempe-

rature and frequency indicated

e ® data in terminal zone
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data in glass tran-
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Figure 4: Apparent activation energy
of flow versus '['—Tg for the poly-

mers indicated in Figure 3

gy - on Tg (comp. Figure 1). This is not surprising, because the shift is efected versus 1/T. This
means that the isochrones of dynamic viscosity are shifted along the slope of the zero shear visco-
sity or along the slope given by the activation energy of viscous flow, as demonstrated by SCHNEI-

DER and CANTOW &),

The same regularities are evidenced also by the composite curves in the glass transition range, as
shown by the data in Figure 3. For both the transition zone from the glassy state to the rubber pla-
teau as well as for the terminal zone of viscous flow the temperature coefficient of viscoelastic

properties seems to increase in parallel to the glass transition temperature of the respective polymer.
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On the contrary, the steepness of the

3 & /PDNBM transitions in the frequency range
P bl -~  PHECM is invariant essentially 21).
1Y)
15 2 g’ A / PMMA In conclusion the linear viscoelastic
- J ™ . . .
Dol 4 ° behaviour can be interpreted unequi-
PBMA }/ - vocally by the apparent activation
10 b IC a energy of viscous flow. The proposed
hh-PPAPMA’ / ‘ oI method is satisfactory also at very
Aht-pp o & low temperatures near T_, where
O |
5 PIB/ - the WLF equation oftenly fails. The
/‘ -|T ‘°v‘° EYRING model applies down to
PDMS temperatures T_ + 40 K.
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